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Abstract We report a computational study of two-stage SP models on a large set
of benchmark problems and consider the following methods: (i) Solution of the deter-
ministic equivalent problem by the simplex method and an interior point method,
(ii) Benders decomposition (L-shaped method with aggregated cuts), (iii) Regular-
ised decomposition of Ruszczyński (Math Program 35:309–333, 1986), (iv) Bend-
ers decomposition with regularization of the expected recourse by the level method
(Lemaréchal et al. in Math Program 69:111–147, 1995), (v) Trust region (regularisa-
tion) method of Linderoth and Wright (Comput Optim Appl 24:207–250, 2003). In this
study the three regularisation methods have been introduced within the computational
structure of Benders decomposition. Thus second-stage infeasibility is controlled in
the traditional manner, by imposing feasibility cuts. This approach allows extensions
of the regularisation to feasibility issues, as in Fábián and Szőke (Comput Manag Sci
4:313–353, 2007). We report computational results for a wide range of benchmark
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problems from the POSTS and SLPTESTSET collections and a collection of difficult
test problems compiled by us. Finally the scale-up properties and the performance
profiles of the methods are presented.

Mathematics Subject Classification 49M27 · 65K05 · 90C05 · 90C06 · 90C15 ·
90C51

1 Introduction and background

Formulation of stochastic optimisation problems and computational algorithms for
their solution continue to make steady progress as can be seen from an analysis of
many developments in this field. The edited volume by Wallace and Ziemba [45]
outlines both the modelling systems for stochastic programming (SP) and many appli-
cations in diverse domains.

More recently, Fabozzi et al. [18] have considered the application of SP models to
challenging financial engineering problems. The tightly knit yet highly focused Sto-
chastic Programming Community, their active website http://stoprog.org, and their
triennial international SP conference points to the progressive acceptance of SP as a
valuable decision tool. The Committee on Stochastic Programming (COSP) exists as
a standing committee of the Mathematical Optimization Society, and also serves as a
liaison to related professional societies to promote stochastic programming.

At the same time many of the major software vendors, namely, XPRESS, AIMMS,
MAXIMAL, and GAMS have started offering SP extensions to their optimisation
suites.

Our analysis of the modelling and algorithmic solver requirements reveals that (a)
modelling support, (b) scenario generation and (c) solution methods are three impor-
tant aspects of a working SP system. Our research is focused on all three aspects and
we refer the readers to Valente et al. [42] for modelling and Mitra et al. [32] and Di
Domenica et al. [13] for scenario generation. In this paper we are concerned entirely
with computational solution methods. Given the tremendous advances in LP solver
algorithms there is a certain amount of complacency that by constructing a “deter-
ministic equivalent” problem it is possible to process most realistic instances of SP
problems. In this paper we highlight the shortcoming of this line of argument. We
describe the implementation and refinement of established algorithmic methods and
report a computational study which clearly underpins the superior scale up properties
of the solution methods which are described in this paper.

A taxonomy of the important class of SP problems may be found in [42,43]. The
most important class of problems with many applications is the two-stage stochas-
tic programming model with recourse; this class of models originated from the early
research of Beale [2], Dantzig [10] and Wets [46].

A comprehensive treatment of the models and solution methods can be found in
[7,25,31,35,40], and [24]. Some of these monographs contain extensions of the origi-
nal model. Colombo et al. [9] and Gassmann and Wallace [20] describe computational
studies which are based on interior point method and simplex based methods respec-
tively. Birge [4] covers a broad range of SP solution algorithms and applications in
his survey.
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The rest of this paper is organised in the following way. In Sect. 2 we introduce
the model setting of the two stage stochastic programming problem, in Sect. 3 we
consider a selection of solution methods for processing this class of problems. First
we consider direct solution of the deterministic equivalent LP problem. Then we dis-
cuss Benders decomposition, and the need for regularisation. We first present the
Regularized Decomposition method of Ruszczyński [37] and then introduce another
regularisation approach in some detail, namely, the Level Method [29] adapted for the
two-stage stochastic programming problem. Finally we outline the box-constrained
trust-region method of Linderoth and Wright [30].

In Sect. 4 we discuss implementation issues, in Sect. 5 we set out the computational
study and in Sect. 6 we summarise our conclusions.

2 The model setting

2.1 Two-stage problems

In this paper we only consider linear SP models and assume that the random param-
eters have a discrete finite distribution. This class is based on two key concepts of
(i) a finite set of discrete scenarios (of model parameters) and (ii) a partition of vari-
ables to first stage (“here and now”) decision variables and a second stage observation
of the parameter realisations and corrective actions and the corresponding recourse
(decision) variables.

The first stage decisions are represented by the vector x. Assume there are S possible
outcomes (scenarios) of the random event, the i th outcome occurring with probability
pi . Suppose the first stage decision has been made with the result x, and the i th sce-
nario is realised. The second stage decision y is computed by solving the following
second-stage problem or recourse problem

Ri (x) : min qT
i y

subject to Ti x + Wi y = hi ,

y ≥ 0,

(1)

where qi , hi are given vectors and Ti , Wi are given matrices. Let Ki denote the set
of those x vectors for which the recourse problem Ri (x) has a feasible solution. This
is a convex polyhedron. For x ∈ Ki , let qi (x) denote the optimal objective value of
the recourse problem. We assume that qi (x) > −∞. (Or equivalently, we assume
that the dual of the recourse problem Ri (x) has a feasible solution. Solvability of the
dual problem does not depend on x.) The function qi : Ki → R is a polyhedral
(i.e., piecewise linear) convex function.

The customary formulation of the first-stage problem is stated as:

min cT x +
S∑

i=1

pi qi (x)

subject to x ∈ X,

x ∈ Ki (i = 1, . . . , S),

(2)
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where X := {x |Ax = b, x ≥ 0 } is a non-empty bounded polyhedron describing
the constraints, c and b are given vectors and A is a given matrix, with compatible
sizes. The expectation part of the objective, F(x) := ∑S

i=1 pi qi (x), is called the
expected recourse function. This is a polyhedral convex function with the domain
K := K1 ∩ · · · ∩ KS .

This two-stage stochastic programming problem ((2) and (1)) can be formulated as
a single linear programming problem called the deterministic equivalent problem:

min cT x + p1qT
1 y1 + . . . + pSqT

S yS
subject to Ax = b,

T1x + W1 y1 = h1,
...

. . .
...

TS x + WS yS = hS,

x ≥ 0, y1 ≥ 0, . . . , yS ≥ 0.

(3)

3 A selection of methods

3.1 Solution of the deterministic equivalent problem

The deterministic equivalent problem (3) can be solved as a linear programming prob-
lem, either by the simplex method or by an interior-point method. In this computational
study we use general-purpose LP solvers for the solution of the deterministic equiva-
lent problem.

3.2 Decomposition methods

The deterministic equivalent problem (3) is a linear programming problem of a specific
structure: for each scenario, a subproblem is included that describes the second-stage
decision associated with the corresponding scenario realisation. The subproblems are
linked by the first-stage decision variables. Dantzig and Madansky [11] observed that
the dual of the deterministic equivalent problem fits the prototype for the Dantzig–
Wolfe decomposition [12].

Van Slyke and Wets [44] proposed a cutting-plane approach for the first-stage prob-
lem (2). Their L-Shaped method builds respective cutting-plane models of the feasible
domain K = K1 ∩ · · · ∩ KS and of the expected recourse function F = ∑S

i=1 pi qi .
We outline cutting-plane models and their relationship with decomposition.

Let us denote the dual of Ri (x) in (1) as

Di (x) : max zT (hi − Ti x)

subject to W T
i z ≤ qi ,

(4)

where z is a real-valued vector.
The feasible region is a convex polyhedron that we assumed nonempty. We will

characterise this polyhedron by two finite sets of vectors: let Ui and Vi denote the
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sets of the extremal points and of the extremal rays, respectively, in case the polyhe-
dron can be represented by these sets. To handle the general case, we require further
formalism; let us add a slack vector γ of appropriate dimension, and use the notation
[W T

i , I ](z, γ ) = W T
i z + γ . Given a composite vector (z, γ ) of appropriate dimen-

sions, let support(z, γ ) denote the set of those column-vectors of the composite matrix
[W T

i , I ] that belong to non-zero (z, γ )-components. Using these, let

Ui :=
{

z
∣∣W T

i z + γ = qi , γ ≥ 0, support(z, γ ) is a linearly independent set
}
,

Vi :=
{

z
∣∣W T

i z + γ = 0, γ ≥ 0, ‖(z, γ )‖ = 1, support(z, γ ) is a minimal
dependent set

}
,

where a minimal dependent set is a set that is not linearly independent; but is minimal
in the sense that having discarded any of its elements, the remaining elements compose
a linearly independent set.

Ui is the set of the basic feasible solutions of problem (4) and hence it is a finite set.
Finiteness of Vi can be proven in a similar manner: Given a minimal dependent subset
of the columns of the matrix [W T

i , I ], there are no more than 2 vectors in Vi that have
the given subset as support. The feasible domain of the dual problem Di (x) in (4) can
be represented as convex combinations of Ui -elements added to cone-combinations
of Vi -elements.

We have x ∈ Ki if and only if the dual problem Di (x) has a finite optimum, that is,

vT
i (hi − Ti x) ≤ 0 holds for every vi ∈ Vi .

In this case, the optimum of Di (x) is attained at an extremal point, and can be computed
as

min ϑi

subject to ϑi ∈ R,

uT
i (hi − Ti x) ≤ ϑi (ui ∈ Ui ).

By the linear programming duality theorem, the optimum of the above problem is
equal to qi (x); hence the first-stage problem (2) is written as

min cT x +
S∑

i=1

piϑi

subject to x ∈ X, ϑi ∈ R (i = 1, . . . , S),

vT
i (hi − Ti x) ≤ 0 (vi ∈ Vi , i = 1, . . . , S),

uT
i (hi − Ti x) ≤ ϑi (ui ∈ Ui , i = 1, . . . , S);

(5)

This we call the disaggregated form. The aggregated form is stated as

min cT x + ϑ

subject to x ∈ X, ϑ ∈ R,

vT
i (hi − Ti x) ≤ 0 (vi ∈ Vi , i = 1, . . . , S),

S∑
i=1

pi uT
i (hi − Ti x) ≤ ϑ

(
(u1, . . . , uS) ∈ U)

,

(6)
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where U ⊂ U1 × · · · × US is a subset that contains an element for each facet in the
graph of the polyhedral convex function F ; formally, we have

F(x) =
S∑

i=1

{
pi max

ui ∈Ui
uT

i (hi − Ti x)

}
= max

(u1,...,us) ∈U

S∑
i=1

pi uT
i (hi − Ti x).

Cutting-plane methods can be devised on the basis of either the disaggregated formula-
tion (5) or the aggregated formulation (6). These are processed by iterative methods that
build respective cutting-plane models of the feasible set K and the expected recourse
function F . Cuts at a given iterate x̂ are generated by solving the dual problems
Di ( x̂ ) (i = 1, . . . , S). Dual problems with unbounded objectives yield feasibility
cuts that are used to construct a model of K . Dual problems with optimal solutions
yield optimality cuts that are used to construct a model of F .

In its original form, the L-Shaped method of Van Slyke and Wets [44] works on
the aggregated problem. A multicut version that works on the disaggregated problem
was proposed by Birge and Louveaux [6].

There is a close relationship between decomposition and cutting-plane approaches.
It turns out that the following approaches yield methods that are in principle identical:

– cutting-plane method for either the disaggregated problem (5) or the aggregated
problem (6),

– Dantzig–Wolfe decomposition [12] applied to the dual of the deterministic equiv-
alent problem (3),

– Benders decomposition [3] applied to the deterministic equivalent problem (3).

Cutting-plane formulations have the advantage that they give a clear visual illustration
of the procedure. A state-of-the-art overview of decomposition methods can be found
in [38].

Aggregated versus disaggregated formulations

The difference between the aggregated and the disaggregated problem formulations
may result in a substantial difference in the efficiency of the solution methods. By
using disaggregated cuts, more detailed information is stored in the master problem,
hence the number of the master iterations is reduced in general. This is done at the
expense of larger master problems.

Birge and Louveaux [7] conclude that the multicut approach is in general more
effective when the number of the scenarios is not significantly larger than the number
of the constraints in the first-stage problem. This conclusion is based on their own
numerical results [6] and those of Gassmann [19].

3.3 Regularisation and trust region methods

It is observed that successive iterations do not generally produce an orderly progression
of solutions—in the sense that while the change in objective value from one iteration
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to the next may be very small, even zero, a wide difference may exist between cor-
responding values of the first-stage variables. This feature of zigzagging in cutting
plane methods is the consequence of using a linear approximation. Improved methods
were developed that use quadratic approximation: proximal point method by [36], and
bundle methods by [26] and [28]. These methods construct a sequence of stability
centers together with the sequence of the iterates. When computing the next iterate,
roaming away from the current stability center is penalised.

Another approach is the trust region methods, where a trust region is constructed
around the current stability center, and the next iterate is selected from this trust region.

Regularized decomposition

The Regularized Decomposition (RD) method of Ruszczyński [37] is a bundle-type
method applied to the minimisation of the sum of polyhedral convex functions over
a convex polyhedron, hence this method fits the disaggregated problem (5). The RD
method lays an emphasis on keeping the master problem as small as possible. (This is
achieved by an effective constraint reduction strategy.) A recent discussion of the RD
method can be found in [38].

Ruszczyński and Świȩtanowski [41] implemented the RD method, and solved two-
stage stochastic programming problems, with a growing scenario set. Their test results
show that the RD method is capable of handling large problems.

The level method

A more recent development in convex programming is the level method of Lemaréchal
et al. [29]. This is a special bundle-type method that uses level sets of the model func-
tions for regularisation. Let us consider the problem

min f (x)

subject to
x ∈ Y,

(7)

where Y ⊂ R
n is a convex bounded polyhedron, and f a real-valued convex function,

Lipschitzian relative to Y . The level method is an iterative method, a direct generaliza-
tion of the classical cutting-plane method. A cutting-plane model of f is maintained
using function values and subgradients computed at the known iterates. Let f denote
the current model function; this is the upper cover of the linear support functions drawn
at the known iterates. Hence f is a polyhedral convex lower approximation of f . The
level sets of the model function are used for regularization.

Let x̂ denote the current iterate. Let F� denote the minimum of the objective values
in the known iterates. Obviously F� is an upper bound for the optimum of (7).

Let F := minx∈Y f (x) denote the minimum of the current model function over
the feasible polyhedron. Obviously F is a lower bound for the optimum of (7).

If the gap F� − F is small, then the algorithm stops. Otherwise let us consider the
level set of the current model function belonging to the level (1 − λ)F� + λF where
0 < λ < 1 is a fixed parameter. Using formulas, the current level set is
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Ŷ :=
{

x ∈ Y
∣∣∣ f (x) ≤ (1 − λ)F� + λF

}
.

The next iterate is obtained by projecting the current iterate onto the current level set.
Formally, the next iterate is an optimal solution of the convex quadratic programming
problem min ‖x − x̂‖2 subject to x ∈ Ŷ .

Lemaréchal et al. [29] gives the following efficiency estimate: To obtain a gap
smaller than ε, it suffices to perform

κ

(
DL

ε

)2

(8)

iterations, where D is the diameter of the feasible polyhedron, L is a Lipschitz constant
of the objective function, and κ is a constant that depends only on the parameter of
the algorithm.

Applying the level method to our first-stage problem (2), let f (x) := cT x + F(x)

and Y := X∩K . The feasible domain is not known explicitly (except for problems with
relatively complete recourse). Hence, in general, we must construct a cutting-plane
model of Y using feasibility cuts. The level method must be adapted accordingly: the
objective value can only be computed for feasible iterates. We clearly obtain a finite
procedure because the set of the possible cuts is finite. (We never discard cuts in our
implementation. Though there are means of bundle reduction for the level method, we
did not implement them because the level method solved our test problems in but a
few iterations.)

Remark 1 In case of relatively complete recourse no feasibility cuts are needed, and
the efficiency estimate (8) applies. This estimate is essentially different from the clas-
sic finiteness results obtained when a polyhedral convex function is minimised by a
cutting-plane method. Finiteness results are based on enumeration. The straightfor-
ward finiteness proof assumes that basic solutions are found for the model problems,
and that there is no degeneracy. (These assumptions facilitate bundle reduction.)

An interesting finiteness proof that allows for nonbasic solutions is presented in
[39]. This is based on the enumeration of the cells (i.e., polyhedrons, facets, edges,
vertices) that the linear pieces of the objective function define.

Remark 2 In general, the constants L and D in (8) are not easily derived from the
problem data. Upper bounds of the Lipschitz constant L are proposed in [17] for the
case of special two-stage stochastic programming problems, e.g., those having network
recourse (SP problems where the second-stage subproblems are network flow prob-
lems). But even with constants of reasonable magnitudes, the estimate (8) generally
yields bounds too large for practical purposes.

However, the level method performs much better in practice than the estimate (8)
implies. Nemirovski [33, chapter 5.3.2] observes the following experimental fact:
when solving a problem with n variables, every n steps add a new accurate digit in our
estimate of the optimum. This observation is confirmed by those experiments reported
in [17], where the level method is applied for the solution of two-stage stochastic
programming problems with relatively complete recourse. That paper also reports on
solving the problems with growing scenario sets. According to the results presented,
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there is no relationship connecting the number of the scenarios and the number of the
level master iterations required (provided the number of the scenarios is large enough).

Remark 3 In the present study we have implemented the level method as described
above. However, there are extensions of the level method that particularly fit in with
a two-stage stochastic problem solver.

The constrained level method of Lemaréchal et al. [29] is a primal-dual method that
solves convex problems involving constraint functions. The first-stage problem (2) can
be formulated using a constraint function instead of the set constraints x ∈ Ki (i =
1, . . . , S).
A measure of the second-stage infeasibility can be used as a constraint function;
namely, the expectation of the infeasibility in the corresponding second-stage prob-
lems. Fábián and Szőke [17] applied the constrained level method to this constraint-
function formulation of the first-stage problem. The advantage of this approach is
that regularisation extends to feasibility issues. (This approach requires extending the
expected recourse function beyond K .)

Fábián [16] proposed inexact versions of the level method and the constrained level
method. The inexact methods use approximate data to construct models of the objec-
tive and constraint functions. At the beginning of the procedure, a rough approximation
is used, and the accuracy is gradually increased as the optimum is approached. Solving
the first-stage problem with an inexact method facilitates a progressive approximation
of the distribution. Moreover we can work with approximate solutions of the second-
stage problems. Numerical results of Fábián and Szőke [17] show that this progressive
approximation framework is effective: although the number of the master iterations
is larger than in the case of the exact method, there is a substantial reduction in the
solution time of the second-stage problems.

A different approach of using inexact bundle methods for two-stage stochastic
programming problems is proposed by Oliveira et al. [34].

Remark 4 The level method can also be implemented for problems with unbounded
domain Y . A set of initial cuts is then needed to make the master objective bounded
from below. (Just like with a pure cutting-plane method.)

The constant D is never actually used in course of the level method; it is used only
in the convergence proof and in the theoretical efficiency estimate (8). In case the
objective function f is polyhedral, then finiteness of the procedure follows from the
finiteness of the set of the possible cuts.

Remark 5 An interesting feature of the level method is that the parameter λ is fixed.
(This is in contrast with other bundle-type methods that need continual tuning of the
parameters in course of operation.)

We tested with different settings of λ, and experienced slight differences in running
times, but could not find a universally best setting. We decided to work with λ = 0.5.

Box-constrained method

The box-constrained trust-region method of Linderoth and Wright [30] solves the
disaggregated problem (5), and uses a special trust-region approach.
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Trust-region methods construct a sequence of stability centers together with the
sequence of the iterates. Trust regions are constructed around the stability centers, and
the next iterate is selected from the current trust region. Linderoth and Wright con-
struct box-shaped trust regions, hence the resulting master problems remain linear.
The size of the trust region is continually adapted on the basis of the quality of the
current solution.

4 Algorithmic descriptions and implementation issues

All solution methods considered in the current study were implemented within the
FortSP stochastic solver system [15] which includes an extensible algorithmic frame-
work for creating decomposition-based methods. The following algorithms were
implemented based on this framework:

• Benders decomposition (Benders),
• Benders decomposition with regularisation by the level method (Level),
• the trust region method based on l∞ norm (TR),
• regularized decomposition (RD).

For more details including the solver system architecture and pseudo-code of each
method refer to [15]. Here we present only the most important details specific to our
implementation.

4.1 Solution of the deterministic equivalent by simplex and interior-point methods

The first approach to solve stochastic linear programming problems we considered
was using a state-of-the-art LP solver to optimise the deterministic equivalent prob-
lem (3). For this purpose CPLEX barrier and dual simplex optimisers were selected
since they provide high-performance implementation of corresponding methods.

We also solved our problems by the HOPDM solver [8,21], an implementation of
the infeasible primal-dual interior point method.

The results summarised in Table 1 show that while it took HOPDM on average less
iterations to solve a problem, CPLEX barrier optimiser was faster in our benchmarks.
This can be explained by the fact that CPLEX is optimised for the underlying hard-
ware; in particular, it uses high performance Intel Math Kernel Library which is tuned
for the hardware we were using in the tests.

4.2 Benders decomposition

For the present computational study, we have implemented a decomposition
method that works on the aggregated problem (6). After a certain number of itera-

Table 1 Summary of CPLEX
barrier optimiser and HOPDM
performance on 95 test problems
described in Sect. 5.2

CPLEX HOPDM

Average iterations 29 21

Average time 56.66 170.50

Solved problems 87 78
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tions, let V̂i ⊂ Vi denote the subsets of the known elements of Vi (i = 1, . . . , S),
respectively. Similarly, let Û ⊂ U denote the subset of the known elements of
U ⊂ U1 × · · · × US . We solve the current problem

min cT x + ϑ

subject to x ∈ X, ϑ ∈ R,

vT
i (hi − Ti x) ≤ 0 (vi ∈ V̂i , i = 1, . . . , S),

S∑
i=1

pi uT
i (hi − Ti x) ≤ ϑ

(
(u1, . . . , uS) ∈ Û )

.

(9)

If the problem (9) is infeasible, then so is the original problem. Let x̂ denote an opti-
mal solution. In order to generate cuts at x̂, we solve the dual recourse problems
Di ( x̂ ) (i = 1, . . . , S) with a simplex-type method. Let

Î := {
1 ≤ i ≤ S

∣∣ problem Di ( x̂ ) has unbounded objective
}
.

If Î = ∅ then the solution process of each dual recourse problem terminated with
an optimal basic solution ûi ∈ Ui . If x̂ is near-optimal then the procedure stops.
Otherwise we add the point (û1, . . . , ûS) to Û , rebuild the model problem (9), and
start a new iteration.

If Î �= ∅ then for i ∈ Î , the solution process of the dual recourse problem Di ( x̂ )

terminated with v̂i ∈ Vi . We add v̂i to V̂i (i ∈ Î ), rebuild the problem (9), and start a
new iteration.

4.3 Benders decomposition with level regularisation

On the basis of the decomposition method described above we implemented a rudi-
mentary version of the level decomposition. We use the original exact level method,
hence we use no distribution approximation, and second-stage problems are solved
exactly (i.e., with the same high accuracy always). Algorithm 1 shows the pseudo-code
for the method.

Our computational results reported in Sect. 5.3 show that level-type regularisation
is indeed advantageous.

4.4 Regularized decomposition

In addition to the methods that work on the aggregated problem we implemented two
algorithms based on the disaggregated (multicut) formulation (5).

The first method is Regularized Decomposition (RD) of Ruszczyński [37]. For this
method we implemented deletion of inactive cuts and the rules for dynamic adaptation
of the penalty parameter σ as described by Ruszczyński and Świȩtanowski [41]:

• if F(xk) > γ F(x̄k) + (1 − γ )F̂k then σ ← σ/2,
• if F(xk) < (1 − γ )F(x̄k) + γ F̂k then σ ← 2σ ,
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Algorithm 1 Benders decomposition with regularisation by the level method
choose iteration limit kmax ∈ Z+
choose relative stopping tolerance ε ∈ R+
solve the expected value problem to get a solution x0 (initial iterate)
k ← 0, F∗ ← ∞
choose λ ∈ (0, 1)

F0 ← −∞
while time limit is not reached and k < kmax do

solve the recourse problems (1) with x = xk and compute F(xk )

if all recourse problems are feasible then
add an optimality cut
if F(xk ) < F∗ then

F∗ ← F(xk )

x∗ ← xk

end if
else

add a feasibility cut
end if
if (F∗ − Fk )/(|F∗| + 10−10) ≤ ε then

stop
end if
solve the master problem (9) to get an optimal solution (x′, ϑ ′) and the optimal objective value Fk+1.
if (F∗ − Fk+1)/(|F∗| + 10−10) ≤ ε then

stop
end if
solve the projection problem:

min ‖x − x′‖2

subject to cT x + ϑ ≤ (1 − λ)Fk+1 + λF∗
x ∈ X, ϑ ∈ R,

vT
i (hi − Ti x) ≤ 0 (vi ∈ V̂i , i = 1, . . . , S ),

S∑
i=1

pi uT
i (hi − Ti x) ≤ ϑ

(
(u1, . . . , uS) ∈ Û )

.

let (xk+1, θk+1) be an optimal solution of the projection problem; then xk+1 is the next iterate
k ← k + 1

end while

Here F̂k = cT xk + ϑk and F(x) = cT x +
S∑

i=1
pi qi (x).

where x̄k is a reference point, (xk,ϑk) is a solution of the master problem at the
iteration k, F̂k = cT xk + ∑S

i=1 piϑ
k
i , F(x) = cT x + ∑S

i=1 pi qi (x) and γ ∈ (0, 1)

is a parameter.
Regularised master problem at the iteration k is formulated as follows:

min cT x +
S∑

i=1

piϑi + 1

2σ
‖x − x̄k‖2

subject to x ∈ X, ϑi ∈ R (i = 1, . . . , S),

vT
i (hi − Ti x) ≤ 0 (vi ∈ V̂i , i = 1, . . . , S),

uT
i (hi − Ti x) ≤ ϑi (ui ∈ Ûi , i = 1, . . . , S).

(10)
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For a more detailed description of the implementation including the pseudo-code
please refer to Ellison et al. [15].

4.5 The trust region method based on the infinity norm

We also implemented the l∞ trust region L-shaped method of [30]. It operates on the
disaggregated problem (5) with additional bounds of the form

− 	e ≤ x − x̄k ≤ 	e, (11)

where 	 is the trust region radius, e = (1, 1, . . . , 1) and x̄k is a reference point at the
iteration k. The rules of updating 	 are the same as in [30] and are outlined below
(counter is initially set to 0):

if F(x̄k) − F(xk) ≥ ξ(F(x̄k) − F̂k) then
if F(x̄k) − F(xk) ≥ 0.5(F(x̄k) − F̂k) and ‖x̄k − xk‖∞ = 	 then

	 ← min(2	,	hi )

end if
counter ← 0

else
ρ ← − min(1,	)(F(x̄k) − F(xk))/(F(x̄k) − F̂k)

if ρ > 0 then
counter ← counter + 1

end if
if ρ > 3 or (counter ≥ 3 and ρ ∈ (1, 3]) then

	 ← 	/ min(ρ, 4)

counter ← 0
end if

end if

F̂k = cT xk + ∑S
i=1 piϑ

k
i , where (xk,ϑk) is a solution of the master problem at

the iteration k, 	hi is an upper bound on the radius and ξ ∈ (0, 1/2) is a parameter.
The complete pseudo-code of the method can be found in Ellison et al. [15].

5 Computational study

5.1 Experimental setup

The computational experiments were performed on a Linux machine with 2.4 GHz
Intel CORE i5 M520 CPU and 6 GiB of RAM. Deterministic equivalents were solved
with CPLEX 12.1 dual simplex and barrier optimisers. Crossover to a basic solution
was disabled for the barrier optimiser and the number of threads was limited to 1. For
other CPLEX options the default values were used.

The times are reported in seconds with times of reading input files not included.
For simplex and IPM the times of constructing deterministic equivalent problems are
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included though it should be noted that they only amount to small fractions of the
total. The time limit of 1,800 s was used in all the tests. CPLEX linear and quadratic
programming solver was used to solve master problem and subproblems in the decom-
position methods. All the test problems were presented in SMPS format introduced
by Birge et al. [5].

The first-stage solution of the expected value problem was taken as a starting point
for the decomposition methods. The values of the parameters are specified below.

• Benders decomposition with regularisation by the level method:
λ = 0.5,

• Regularized decomposition:
σ = 1, γ = 0.9.

• Trust region method based on l∞ norm:
	 = 1,	hi = 103 (except for the saphir problems where 	hi = 109), ξ = 10−4.

5.2 Data sets

We considered test problems which were drawn from four different sources described
in Table 3. Table 2 gives the dimensions of these problems.

Most of the benchmark problems have stochasticity only in the right-hand side
(RHS). Notable exception is the SAPHIR family of problems which has random ele-
ments both in the RHS and the constraint matrix. The first-stage subproblems are
bounded in all our test problems.

It should be noted that the problems generated with GENSLP (rand0, rand1 and
rand2) do not possess any internal structure inherent in real-world problems. However
they are still useful for the purposes of comparing scale-up properties of algorithms.

5.3 Computational results

The computational results are presented in Tables 4 and 5. Iter denotes the number of
iterations. For decomposition methods this is the number of master iterations.

Finally we present the results in the form of performance profiles. The performance
profile for a solver is defined by Dolan and Moré [14] as the cumulative distribution
function for a performance metric. We use the ratio of the solving time versus the best
time as the performance metric. Let P and M be the set of problems and the set of
solution methods respectively. We define by tp,m the time of solving problem p ∈ P
with method m ∈ M . For every pair (p, m) we compute performance ratio

rp,m = tp,m

min{tp,m |m ∈ M} ,
If method m failed to solve problem p the formula above is not defined. In this case

we set rp,m := ∞.
The cumulative distribution function for the performance ratio is defined as follows:

ρm(τ ) = |{p ∈ P|rp,m ≤ τ }|
|P|
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Table 2 Dimensions of test problems

Name Scen Stage 1 Stage 2 Deterministic equivalent

Rows Cols Rows Cols Rows Cols Nonzeros

fxm 6 92 114 238 343 1,520 2,172 12,139

16 92 114 238 343 3,900 5,602 31,239

fxmev 1 92 114 238 343 330 457 2,589

pltexpa 6 62 188 104 272 686 1,820 3,703

16 62 188 104 272 1,726 4,540 9,233

stormg2 8 185 121 528 1,259 4,409 10,193 27,424

27 185 121 528 1,259 14,441 34,114 90,903

125 185 121 528 1,259 66,185 157,496 418,321

1,000 185 121 528 1,259 528,185 1,259,121 3,341,696

airl-first 25 2 4 6 8 152 204 604

airl-second 25 2 4 6 8 152 204 604

airl-randgen 676 2 4 6 8 4,058 5,412 16,228

assets 100 5 13 5 13 505 1,313 2,621

37,500 5 13 5 13 187,505 487,513 975,021

4node 1 14 52 74 186 88 238 756

2 14 52 74 186 162 424 1,224

4 14 52 74 186 310 796 2,160

8 14 52 74 186 606 1,540 4,032

16 14 52 74 186 1,198 3,028 7,776

32 14 52 74 186 2,382 6,004 15,264

64 14 52 74 186 4,750 11,956 30,240

128 14 52 74 186 9,486 23,860 60,192

256 14 52 74 186 18,958 47,668 120,096

512 14 52 74 186 37,902 95,284 239,904

1,024 14 52 74 186 75,790 190,516 479,520

2,048 14 52 74 186 151,566 380,980 958,752

4,096 14 52 74 186 303,118 761,908 1,917,216

8,192 14 52 74 186 606,222 1,523,764 3,834,144

16,384 14 52 74 186 1,212,430 3,047,476 7,668,000

32,768 14 52 74 186 2,424,846 6,094,900 15,335,712

4node-base 1 16 52 74 186 90 238 772

2 16 52 74 186 164 424 1,240

4 16 52 74 186 312 796 2,176

8 16 52 74 186 608 1,540 4,048

16 16 52 74 186 1,200 3,028 7,792

32 16 52 74 186 2,384 6,004 15,280

64 16 52 74 186 4,752 11,956 30,256

128 16 52 74 186 9,488 23,860 60,208

256 16 52 74 186 18,960 47,668 120,112
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Table 2 continued

Name Scen Stage 1 Stage 2 Deterministic equivalent

Rows Cols Rows Cols Rows Cols Nonzeros

512 16 52 74 186 37,904 95,284 239,920

1,024 16 52 74 186 75,792 190,516 479,536

2,048 16 52 74 186 151,568 380,980 958,768

4,096 16 52 74 186 303,120 761,908 1,917,232

8,192 16 52 74 186 606,224 1,523,764 3,834,160

16,384 16 52 74 186 1,212,432 3,047,476 7,668,016

32,768 16 52 74 186 2,424,848 6,094,900 15,335,728

4node-old 32 14 52 74 186 2,382 6,004 15,264

chem 2 38 39 46 41 130 121 289

chem-base 2 38 39 40 41 118 121 277

lands 3 2 4 7 12 23 40 92

lands-blocks 3 2 4 7 12 23 40 92

env-aggr 5 48 49 48 49 288 294 876

env-first 5 48 49 48 49 288 294 876

env-loose 5 48 49 48 49 288 294 876

env 15 48 49 48 49 768 784 2,356

1,200 48 49 48 49 57,648 58,849 177,736

1,875 48 49 48 49 90,048 91,924 277,636

3,780 48 49 48 49 181,488 185,269 559,576

5,292 48 49 48 49 254,064 259,357 783,352

8,232 48 49 48 49 395,184 403,417 1,218,472

32,928 48 49 48 49 1,580,592 1,613,521 4,873,480

env-diss-aggr 5 48 49 48 49 288 294 876

env-diss-first 5 48 49 48 49 288 294 876

env-diss-loose 5 48 49 48 49 288 294 876

env-diss 15 48 49 48 49 768 784 2,356

1,200 48 49 48 49 57,648 58,849 177,736

1,875 48 49 48 49 90,048 91,924 277,636

3,780 48 49 48 49 181,488 185,269 559,576

5,292 48 49 48 49 254,064 259,357 783,352

8,232 48 49 48 49 395,184 403,417 1,218,472

32,928 48 49 48 49 1,580,592 1,613,521 4,873,480

phone1 1 1 8 23 85 24 93 309

phone 32,768 1 8 23 85 753,665 2,785,288 9,863,176

stocfor1 1 15 15 102 96 117 111 447

stocfor2 64 15 15 102 96 6,543 6,159 26,907

rand0 2,000 50 100 25 50 50,050 100,100 754,501

4,000 50 100 25 50 100,050 200,100 1,508,501
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Table 2 continued

Name Scen Stage 1 Stage 2 Deterministic equivalent

Rows Cols Rows Cols Rows Cols Nonzeros

6,000 50 100 25 50 150,050 300,100 2,262,501

8,000 50 100 25 50 200,050 400,100 3,016,501

10,000 50 100 25 50 250,050 500,100 3,770,501

rand1 2,000 100 200 50 100 100,100 200,200 3,006,001

4,000 100 200 50 100 200,100 400,200 6,010,001

6,000 100 200 50 100 300,100 600,200 9,014,001

8,000 100 200 50 100 400,100 800,200 12,018,001

10,000 100 200 50 100 500,100 1,000,200 15,022,001

rand2 2,000 150 300 75 150 150,150 300,300 6,758,501

4,000 150 300 75 150 300,150 600,300 13,512,501

6,000 150 300 75 150 450,150 900,300 20,266,501

8,000 150 300 75 150 600,150 1,200,300 27,020,501

10,000 150 300 75 150 750,150 1,500,300 33,774,501

saphir 50 32 53 8,678 3,924 433,932 196,253 1,136,753

100 32 53 8,678 3,924 867,832 392,453 2,273,403

200 32 53 8,678 3,924 1,735,632 784,853 4,546,703

500 32 53 8,678 3,924 4,339,032 1,962,053 11,366,603

1,000 32 53 8,678 3,924 8,678,032 3,924,053 22,733,103

Table 3 Sources of test problems

Source Reference Comments

1. POSTS collection [22] Two-stage problems from the (PO)rtable (S)tochastic
programming (T)est (S)et (POSTS)

2. Slptestset collection [1] Two-stage problems from the collection of stochastic
LP test problems

3. Random problems [23] Artificial test problems rand0, rand1 and rand2
generated with pseudo random stochastic LP problem
generator GENSLP

4. SAMPL problems [27,43] Problems instantiated from the SAPHIR gas portfolio
planning model formulated in Stochastic AMPL
(SAMPL)

We calculated performance profile of each considered method on the whole set of test
problems. These profiles are shown in Fig. 1. The value of ρm(τ ) gives the probabil-
ity that method m solves a problem within a ratio τ of the best solver. For example
according to Fig. 1 the level method was the first in 25 % of cases and solved 95 % of
the problems within a ratio 11 of the best time.

The notable advantages of performance profiles over other approaches to perfor-
mance comparison are as follows. Firstly, they minimize the influence of a small subset
of problems on the benchmarking process. Secondly, there is no need to discard solver
failures. Thirdly, performance profiles provide a visualisation of large sets of test
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Table 4 Performance of DEP solution methods and level-regularised decomposition

Name Scen DEP-Simplex DEP-IPM Level Optimal

Time Iter Time Iter Time Iter Value

fxm 6 0.06 1,259 0.05 17 0.15 20 18,417.1

16 0.22 3,461 0.13 23 0.15 20 18,416.8

fxmev 1 0.01 273 0.01 14 0.13 20 18,416.8

pltexpa 6 0.01 324 0.03 14 0.02 1 −9.47935

16 0.01 801 0.08 16 0.02 1 −9.66331

stormg2 8 0.08 3,649 0.25 28 0.16 20 15,535,200

27 0.47 12,770 2.27 27 0.31 17 15,509,000

125 5.10 70,177 8.85 57 0.93 17 15,512,100

1,000 226.70 753,739 137.94 114 6.21 21 15,802,600

airl-first 25 0.01 162 0.01 9 0.03 17 249,102

airl-second 25 0.00 145 0.01 11 0.03 17 269,665

airl-randgen 676 0.25 4,544 0.05 11 0.22 18 250,262

assets 100 0.02 494 0.02 17 0.03 1 −723.839

37,500 1,046.85 190,774 6.37 24 87.55 2 −695.963

4node 1 0.01 110 0.01 12 0.06 21 413.388

2 0.01 196 0.01 14 0.10 42 414.013

4 0.01 326 0.02 17 0.11 45 416.513

8 0.03 825 0.05 18 0.10 45 418.513

16 0.06 1,548 0.11 17 0.15 44 423.013

32 0.16 2,948 0.40 15 0.22 51 423.013

64 0.72 7,185 0.44 17 0.36 54 423.013

128 2.30 12,053 0.50 26 0.47 50 423.013

256 7.69 31,745 1.05 30 0.87 48 425.375

512 57.89 57,200 2.35 30 2.12 51 429.963

1,024 293.19 133,318 5.28 32 3.95 53 434.112

2,048 1,360.60 285,017 12.44 36 7.82 49 441.738

4,096 t − 32.67 46 9.12 46 446.856

8,192 t − 53.82 45 22.68 55 446.856

16,384 t − 113.20 46 45.24 52 446.856

32,768 t − 257.96 48 127.86 62 446.856

4node-base 1 0.01 111 0.01 11 0.04 16 413.388

2 0.01 196 0.01 14 0.06 29 414.013

4 0.01 421 0.02 14 0.07 30 414.388

8 0.03 887 0.04 15 0.10 35 414.688

16 0.06 1,672 0.11 17 0.10 30 414.688

32 0.15 3,318 0.40 15 0.16 37 416.6

64 0.49 7,745 0.36 13 0.22 33 416.6

128 1.58 17,217 0.33 19 0.35 37 416.6
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Table 4 continued

Name Scen DEP-Simplex DEP-IPM Level Optimal

Time Iter Time Iter Time Iter Value

256 4.42 36,201 0.81 23 0.53 31 417.162

512 22.44 80,941 2.20 29 1.45 37 420.293

1,024 141.91 187,231 5.21 32 3.33 41 423.05

2,048 694.89 337,082 11.12 32 6.13 42 423.763

4,096 t – 27.03 37 10.60 39 424.753

8,192 t – 51.29 40 24.99 48 424.775

16,384 t – 177.81 73 47.31 41 424.775

32,768 t – 242.91 48 102.29 49 424.775

4node-old 32 0.20 3,645 0.49 18 0.09 20 83,094.1

chem 2 0.00 29 0.00 11 0.03 15 −13,009.2

chem-base 2 0.00 31 0.00 11 0.05 14 −13,009.2

lands 3 0.00 21 0.00 9 0.02 10 381.853

lands-blocks 3 0.00 21 0.00 9 0.02 10 381.853

env-aggr 5 0.01 117 0.01 12 0.04 16 20,478.7

env-first 5 0.01 112 0.01 11 0.02 1 19,777.4

env-loose 5 0.01 112 0.01 12 0.02 1 19,777.4

env 15 0.01 321 0.01 16 0.05 15 22,265.3

1,200 1.38 23,557 1.44 34 1.73 15 22,428.9

1,875 2.90 36,567 2.60 34 2.80 15 22,447.1

3,780 11.21 73,421 7.38 40 5.47 15 22,441

5,292 20.28 102,757 12.19 42 7.67 15 22,438.4

8,232 62.25 318,430 m − 12.58 15 22,439.1

32,928 934.38 1,294,480 m − 75.67 15 22,439.1

env-diss-aggr 5 0.01 131 0.01 9 0.05 22 15,963.9

env-diss-first 5 0.01 122 0.01 9 0.04 12 14,794.6

env-diss-loose 5 0.01 122 0.01 9 0.03 5 14,794.6

env-diss 15 0.01 357 0.02 13 0.10 35 20,773.9

1,200 1.96 26,158 1.99 50 2.80 35 20,808.6

1,875 4.41 40,776 3.63 53 4.49 36 20,809.3

3,780 16.94 82,363 9.32 57 8.87 36 20,794.7

5,292 22.37 113,894 16.17 66 12.95 38 20,788.6

8,232 70.90 318,192 m − 22.49 41 20,799.4

32,928 1,369.97 1,296,010 m − 112.46 41 20,799.4

phone1 1 0.00 19 0.01 8 0.02 1 36.9

phone 32,768 t – 50.91 26 48.23 1 36.9

stocfor1 1 0.00 39 0.01 11 0.03 6 −41,132

stocfor2 64 0.12 2,067 0.08 17 0.12 9 −39,772.4
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Table 4 continued

Name Scen DEP-Simplex DEP-IPM Level Optimal

Time Iter Time Iter Time Iter Value

rand0 2,000 373.46 73,437 9.41 33 6.10 44 162.146

4,000 1,603.25 119,712 34.28 62 10.06 32 199.032

6,000 t – 48.84 60 21.17 51 140.275

8,000 t – 56.89 49 28.86 50 170.318

10,000 t – 98.51 71 52.31 71 139.129

rand1 2,000 t – 39.97 24 52.70 74 244.159

4,000 t – 92.71 28 72.30 59 259.346

6,000 t – 158.24 32 103.00 58 297.563

8,000 t – 228.68 34 141.81 65 262.451

10,000 t – 320.10 39 181.98 63 298.638

rand2 2,000 t – 102.61 22 145.22 65 209.151

4,000 t – 225.71 24 170.08 42 218.247

6,000 t – 400.52 28 369.35 52 239.721

8,000 t – 546.98 29 369.01 44 239.158

10,000 t – 754.52 32 623.59 52 231.706

saphir 50 269.17 84,727 n − 341.86 43 129,505,000

100 685.50 152,866 n − 700.44 46 129,058,000

200 t – 549.45 167 t − 141,473,000

500 t – t − 608.48 44 137,871,000

1,000 t – n − 804.11 46 133,036,000

results as we have in our case. It should be noted, however, that we still investigated
the failures and the cases of unusual performance. This resulted, in particular, in the
adjustment of the values of ε, 	hi and ξ for the RD and TR methods and switching
to a 64-bit platform with more RAM which was crucial for IPM.

As can be seen from Fig. 1, Benders decomposition with regularisation by the level
method is both robust successfully solving the largest fraction of test problems and
compares well with the other methods in terms of performance.

5.4 Comments on scale-up properties and on accuracy

We performed a set of experiments recording the change in the relative gap between
the lower and upper bounds on objective function in the decomposition methods. The
results are shown in Figs. 2, 3, 4 and 5. These diagrams show that level regularisa-
tion provides consistent reduction of the number of iterations needed to achieve the
given precision. There are a few counterexamples, however, such as the env family of
problems.

Figure 6 illustrates the scale-up properties of the algorithms in terms of the change
in the solution time with the number of scenarios on the 4node problems. It shows
that Benders decomposition with the level regularisation scales well at some point
overtaking the multicut methods.
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Table 5 Performance of decomposition methods

Name Scen Benders Level TR RD

Time Iter Time Iter Time Iter Time Iter

fxm 6 0.08 25 0.15 20 0.09 22 0.05 5

16 0.09 25 0.15 20 0.11 22 0.07 5

fxmev 1 0.08 25 0.13 20 0.08 22 0.05 5

pltexpa 6 0.02 1 0.02 1 0.02 1 0.03 1

16 0.02 1 0.02 1 0.02 1 0.03 1

stormg2 8 0.14 23 0.16 20 0.08 9 0.10 10

27 0.47 32 0.31 17 0.18 10 0.23 11

125 1.73 34 0.93 17 0.50 8 0.89 12

1,000 11.56 41 6.21 21 3.38 6 7.30 11

airl-first 25 0.04 16 0.03 17 0.03 6 0.03 10

airl-second 25 0.02 10 0.03 17 0.02 4 0.03 5

airl-randgen 676 0.22 18 0.22 18 0.22 6 0.29 6

assets 100 0.02 1 0.03 1 0.03 1 0.02 1

37,500 87.68 2 87.55 2 172.23 2 114.38 1

4node 1 0.03 24 0.06 21 0.03 8 0.03 15

2 0.04 38 0.10 42 0.02 16 0.05 29

4 0.04 41 0.11 45 0.03 14 0.05 19

8 0.07 64 0.10 45 0.03 13 0.05 16

16 0.11 67 0.15 44 0.04 12 0.05 13

32 0.23 100 0.22 51 0.05 10 0.07 13

64 0.27 80 0.36 54 0.08 11 0.12 14

128 0.39 74 0.47 50 0.15 11 0.19 14

256 0.95 71 0.87 48 0.20 7 0.29 9

512 3.72 92 2.12 51 0.46 7 0.62 9

1,024 5.14 70 3.95 53 0.42 3 1.23 10

2,048 11.78 83 7.82 49 1.30 4 1.22 5

4,096 18.46 89 9.12 46 2.79 3 2.03 4

8,192 46.56 106 22.68 55 9.87 3 6.59 4

16,384 99.00 110 45.24 52 38.28 3 27.50 4

32,768 194.68 122 127.86 62 299.85 3 222.61 4

4node-base 1 0.03 31 0.04 16 0.03 21 0.03 14

2 0.04 44 0.06 29 0.03 19 0.05 19

4 0.06 58 0.07 30 0.04 20 0.07 34

8 0.05 47 0.10 35 0.04 19 0.08 28

16 0.08 56 0.10 30 0.06 21 0.11 28

32 0.17 63 0.16 37 0.07 13 0.18 22

64 0.23 61 0.22 33 0.17 19 0.30 21

128 0.39 65 0.35 37 0.34 19 0.63 23

256 0.89 66 0.53 31 0.45 11 1.81 26
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Table 5 continued

Name Scen Benders Level TR RD

Time Iter Time Iter Time Iter Time Iter

512 3.27 84 1.45 37 1.84 14 4.98 29

1,024 9.57 115 3.33 41 5.53 13 9.17 17

2,048 19.72 142 6.13 42 21.82 13 31.08 21

4,096 38.51 174 10.60 39 85.68 12 146.50 18

8,192 133.45 290 24.99 48 354.05 14 t −
16,384 164.07 175 47.31 41 1,430.72 13 t −
32,768 314.31 191 102.29 49 t − t −

4node-old 32 0.08 30 0.09 20 0.04 7 0.09 10

chem 2 0.04 7 0.03 15 0.03 13 0.04 19

chem-base 2 0.02 6 0.05 14 0.02 13 0.04 22

lands 3 0.02 8 0.02 10 0.02 5 0.03 17

lands-blocks 3 0.01 8 0.02 10 0.02 5 0.03 17

env-aggr 5 0.02 3 0.04 16 0.02 3 0.03 5

env-first 5 0.02 1 0.02 1 0.02 1 0.02 1

env-loose 5 0.01 1 0.02 1 0.02 1 0.02 1

env 15 0.04 3 0.05 15 0.03 3 0.03 5

1,200 0.34 3 1.73 15 0.48 3 0.76 5

1,875 0.57 3 2.80 15 0.90 3 1.50 5

3,780 1.26 3 5.47 15 2.48 3 3.79 5

5,292 1.96 3 7.67 15 4.51 3 5.89 5

8,232 3.70 3 12.58 15 10.67 3 12.54 5

32,928 39.88 3 75.67 15 211.90 3 212.05 5

env-diss-aggr 5 0.03 9 0.05 22 0.03 9 0.03 17

env-diss-first 5 0.02 14 0.04 12 0.02 4 0.03 4

env-diss-loose 5 0.03 15 0.03 5 0.02 4 0.02 4

env-diss 15 0.05 27 0.10 35 0.05 18 0.07 12

1,200 1.13 24 2.80 35 2.25 18 3.45 19

1,875 2.50 29 4.49 36 5.52 19 4.52 15

3,780 5.04 29 8.87 36 20.23 19 8.98 11

5,292 8.14 34 12.95 38 40.39 17 17.90 13

8,232 14.21 35 22.49 41 119.88 16 99.19 23

32,928 79.52 35 112.46 41 t − t −
phone1 1 0.02 1 0.02 1 0.02 1 0.02 1

phone 32,768 48.34 1 48.23 1 73.45 1 73.75 1

stocfor1 1 0.02 6 0.03 6 0.02 2 0.02 2

stocfor2 64 0.10 7 0.12 9 0.18 14 0.23 18

rand0 2,000 10.42 80 6.10 44 30.33 9 93.78 16

4,000 19.97 69 10.06 32 82.75 8 591.45 14
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Table 5 continued

Name Scen Benders Level TR RD

Time Iter Time Iter Time Iter Time Iter

6,000 41.82 108 21.17 51 275.97 9 t −
8,000 65.51 127 28.86 50 423.51 9 t −

10,000 153.07 230 52.31 71 871.00 10 t −
rand1 2,000 265.14 391 52.70 74 155.81 12 361.54 17

4,000 587.22 502 72.30 59 508.18 11 t −
6,000 649.58 385 103.00 58 937.74 11 t −
8,000 917.24 453 141.81 65 1,801.43 9 t −

10,000 1,160.62 430 181.98 63 t − t −
rand2 2,000 1,800.00 818 145.22 65 334.36 12 794.31 17

4,000 1,616.56 414 170.08 42 813.49 11 t −
6,000 t − 369.35 52 t − t −
8,000 t − 369.01 44 t − t −

10,000 t − 623.59 52 t − t −
saphir 50 733.37 128 341.86 43 578.87 110 n −

100 1,051.89 123 700.44 46 n − n −
200 t − t − t − n −
500 1,109.48 122 608.48 44 1,283.97 99 n −

1,000 1,444.17 124 804.11 46 n − n −
t time limit (1,800 s), m insufficient memory, n numerical difficulties

Fig. 1 Performance profiles

The computational results given in the previous section where obtained using the
relative stopping tolerance ε = 10−5 for the Benders decomposition with and without
regularisation by the level method, i.e. the method terminated if (F∗ − F∗)/(|F∗| +
10−10) ≤ ε, where F∗ and F∗ are, respectively, lower and upper bounds on the
value of the objective function. The stopping criteria in the trust region algorithm and
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Fig. 2 Gap between lower and upper bounds for storm-1,000 problem

Fig. 3 Gap between lower and upper bounds for 4node-32,768 problem

regularised decomposition are different because these methods do not provide global
lower bound. Therefore ε was set to a lower value of 10−6 which achieves the same
precision for most of the problems with the following exceptions that were made to
achieve the desirable precision:

• env-diss with 8,232 scenarios: ε = 10−10 in RD,
• saphir: ε = 10−10 in RD and TR.

For CPLEX barrier optimiser the default complementarity tolerance was used as a
stopping criterion.

6 Discussion and conclusion

In this paper we have made a case for continuing research and development of solution
algorithms for processing scenario based SP recourse problems in particular two stage
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Fig. 4 Gap between lower and upper bounds for rand1-10,000 problem

Fig. 5 Gap between lower and upper bounds for saphir-1,000 problem

SPs. Our empirical computational study clearly establishes the need for robust solu-
tion methods which can process diverse SP applications in particular as these scale up
in size and number of scenarios. We show that simple use of even most powerful hy-
persparse solvers cannot process many industrial strength models specially, when the
model sizes scale up due to multiple scenarios. We also observe that the interior point
method outperformed simplex in the majority of cases. All the same IPM applied to
the deterministic equivalent problem has a limitation requiring large amount of mem-
ory to perform efficiently. In our experiments Benders decomposition performs well,
however, through the regularisation by the level method we are able to process very
large instances of SP application models. Our empirical study comparing multicut and
aggregated regularisation methods reveal that the latter approach scales much better
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Fig. 6 Time versus the number of scenarios on the 4node problems

then the former hence regularisation through the level method performs well across
the entire range of model sizes. We hope to report a similar study for two stage integer
stochastic programming benchmark models.
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